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Abstract. T-ABCD is a time-domain method for blind linear separa-
tion of audio sources proposed by Koldovský and Tichavský (2008). The
method produces short separating filters (5-40 taps) and works well with
signals recorded at the sampling frequency of 8-16 kHz. In this paper, we
propose a novel subband-based variant of T-ABCD, in which the input
signals are decomposed into subbands using a tree-structured QMF fil-
ter bank. T-ABCD is then applied to each subband in parallel, and the
separated subbands are re-ordered and synthesized to yield the final sep-
arated signals. The analysis filter of the filter bank is carefully designed to
enable maximal decimation of signals without aliasing. Short filters ap-
plied within subbands then result in sufficiently long filters in fullband.
Using a reasonable number of subbands, the method yields improved
speed, stability and performance at an arbitrary sampling frequency.

1 Introduction

Blind separation (BSS) of simultaneously active audio sources is a challenging
problem within audio signal processing. The goal is to retrieve d audio sources
from their convolutive mixtures recorded by m microphones. The model is de-
scribed by

xi(n) =
d∑

j=1

Mij−1∑

τ=0

hij(τ)sj(n − τ), i = 1, . . . , m, (1)

where x1(n), . . . , xm(n) are the observed signals on microphones and s1(n), . . . ,
sd(n) are the unknown original (audio) signals. This means that the mixing sys-
tem is a MIMO (multi-input multi-output) linear filter with source-microphone
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impulse responses hij ’s each of length Mij . Linear separation consists in finding a
MIMO filter that inverts the mixing process (1) and yields estimates of the original
signals s1(n), . . . , sd(n). It is convenient to assume the independence of s1(n), . . . ,
sd(n), and the separation can be based on IndependentComponentAnalysis (ICA)
[1]. Indeterminacies that are inherent to the ICA cause that the original colorations
of s1(n), . . . , sd(n) cannot be retrieved. The goal is therefore to estimate their mi-
crophone responses (images), which only have properly defined colorations. The
response of the kth source on the ith microphone is

si
k(n) =

Mik−1∑

τ=0

hik(τ)sk(n − τ). (2)

To apply the ICA, the convolutive mixture (1) must be transformed into an
instantaneous one. This is done either directly in the time-domain (TD) by
decomposing a matrix usually constructed of delayed copies of signals from mi-
crophones, or in the frequency-domain (FD) where the signals are transformed
by the Short-Time Fourier Transform (STFT) that converts the convolution
operation into the ordinary multiplication. Weaknesses of both approaches are
well known from literature. The FD approach meets the so-called permutation
problem [2] due to inherent indeterminacies in ICA and requires long data to
generate sufficient number of samples for each frequency bin. On the other hand,
TD methods are computationally more expensive due to simultaneous optimiza-
tion of all filter coefficients, which restrict their ability to compute long filters.

A reasonable compromise is the subband approach [3] that consists in de-
composing the mixed signals into subbands via a filter bank, separating each
subband by a TD method, permuting the separated subbands, and synthesizing
the final signals. If a moderate number of subbands is chosen, the permutation
problem becomes less difficult compared to the FD approach. Since the subband
signals are decimated, the length of separating filters is multiplied.

Several subband approaches have already been proposed in literature using
various filter banks. The method in [5] uses a uniform DFT filter bank. Araki
et al. [3] use a polyphase filter bank with a single side-band modulation. In
[6,7], uniform FIR filter banks were used. All the referenced methods do not
apply the maximal decimation of signals in order to reduce the aliasing between
subbands. This restrains both the computational efficiency and the effective
length of separating filters.

We propose a novel subband method designed to be maximally effective in this
respect. The signals are decomposed uniformly into 2M subbands using a two-
channel QMF filter bank applied recursively in the full-blown 2-tree structure
with M levels [4]. The signals are decimated by 2 in each level of the 2-tree so
they are finally decimated by 2M , which means maximal decimation. Through a
careful design of a halfband FIR filter, which determines the whole filter bank,
the aliasing is avoided. The blind separation within subbands is then carried
out independently by the T-ABCD method [10], which is robust and effective in
estimating short separating filters. The permutation problem due to the random
order of separated signals in each subband is solved by comparing correlations
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Fig. 1. An illustration of the proposed subband BSS algorithm using the QMF tree-
structured filter bank with M = 2. Here, two-microphone recording is separated into
two responses of each of two original sources.

of absolute values of signals [2]. Finally, the reordered signals are synthesized to
yield the estimated responses (2). The flow of the method is illustrated in Fig. 1.

The following section gives more details on the proposed method, and Section
3 demonstrates its performance by experiments done with real-world signals.

2 Proposed Subband BSS Method

2.1 Subband Decomposition

The building block of the tree-structured subband decomposition applied in the
proposed method is a two-channel bank that separates the input signals into two
bands. In general, a two-channel bank consists of two analysis filters and two
synthesis filters whose transfer functions are, respectively, G0(z), G1(z), H0(z)
and H1(z). The input signal is filtered by G0(z) and G1(z) in parallel, and
the outputs are decimated by 2 giving the subband signals. After the subband
processing, the signals are expanded by 2 and passed through the synthesis filters
and are added to yield the output signal.

The analysis filters of a Quadrature Mirror Filter (QMF) bank satisfy

G1(z) = G0(−z). (3)

G0(z) should be a low-pass filter with the pass band [−π/2, π/2] so that the
decimated signals are not aliased. The synthesis filters may be defined as

H0(z) = 2G1(−z), H1(z) = −2G0(−z). (4)

Then the whole two-channel QMF bank is determined by G0(z).
(4) is a sufficient condition for eliminating the aliasing from synthesized signals

provided that no subband processing is done, i.e., when the signals are expanded
immediately after the decimation (equation (12.58) in [4]). In such special case,
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the transfer function of the two-channel QMF bank is [G0(z)]2 − [G0(−z)]2.
It follows that the bank does not possess the perfect reconstruction property
in general, which is nevertheless not as important in audio applications. While
phase distortions are avoided provided that G0(z) has a linear phase, amplitude
distortions can be made inaudible by a careful design of the filter1.

To decompose the signal into more than two bands, the analysis part of the
two-channel QMF bank can be applied recursively to split each band into two
subbands etc. If the depth of the recursion is M , the filter bank splits the spec-
trum uniformly into 2M subbands. This approach is utilized in the proposed
method as demonstrated by Fig. 1. After the processing of subbands, the syn-
thesis is done backwards then the analysis.

2.2 Separation Algorithm: T-ABCD

T-ABCD is an ICA-based method for blind separation of audio signals working in
time-domain. It is based on the estimation of all independent components (ICs)
of an observation space by an incorporated ICA algorithm. The observation space
is spanned by rows of a data matrix X that may be defined in a general way [10].
For simplicity, we will consider the basic definition that is common to other TD
methods [12]: Rows of X contain L time-shifted copies of each observed signal
x1(n), . . . , xm(n). The number of rows of X is mL, which is the dimension of
the observation space. Linear combinations of rows of X correspond to outputs
of FIR MISO filters of the length L (hence also the ICs of X). The steps of
T-ABCD are as follows.

1. Find all mL independent components of X by an ICA algorithm.
2. Group the components into clusters so that each cluster contains components

corresponding to the same original source.
3. For each cluster, use components of the cluster to reconstruct microphone

responses (images) of a source corresponding to the cluster.

For more details on the method see [9] and [10].
A shortcoming of T-ABCD is that its computational complexity grows rapidly

with L. On the other hand, T-ABCD is very powerful when L is reasonably low
(L = 1, . . . , 40). This is because all ICs of X are estimated without applying
any constraint to the separating MISO filters (step 1), and all ICs are used to
reconstruct the sources’ responses (steps 2 and 3). The performance of T-ABCD
is robust as it is independent of an initialization provided that the applied ICA
algorithm in step 1 is equivariant. Consequently, the use of T-ABCD within the
subband separation is desirable, because the separating filters in subbands are
shorter than those in fullband [3].

1 We have chosen G0(z) as an equiripple FIR filter [4] with 159 taps having the min-
imum attenuation of 60 dB in the stopband. To eliminate the aliasing, the stop-
frequency was shifted slightly from π/2 to the left by ε ≈ 0.01, which is small
enough so that the cut-off band around π/2 is very narrow and results in inaudible
distortions of signals.
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2.3 The Permutation Problem

The estimated responses of sources by T-ABCD are randomly permuted due to
indeterminacy of ICA or, more specifically, due to the indeterminacy of the order
of clusters identified by step 2. Since the permutation might be different in each
subband, the estimated signals in subbands must be aligned before synthesizing
them.

Let ŝi
k,j(n), k = 1, . . . , d be the not yet sorted estimates of responses of the

sources at the ith microphone in the jth subband. We wish to find permutations
πj(k), j = 1, . . . , M such that ŝi

πj(k),j(n) is the estimated response of the kth
source at the microphone in the subband. We shall assume, for convenience, that
the order of the components in one, say in the j1th subband (e.g. j1 = 1), is
correct. Therefore we set πj1 (k) = k, k = 1, . . . , d. Permutations in all other
subbands can be found by maximizing the following criterion,

d(p, q, r, s) =
m∑

i=1

∣∣cov
(|ŝi

p,q(n)|, |ŝi
r,s(n)|)∣∣ =

=
m∑

i=1

1
T

T∑

n=1

(
|ŝi

p,q(n)| − 1
T

T∑

t=1

|ŝi
p,q(t)|

) (
|ŝi

r,s(n)| − 1
T

T∑

t=1

|ŝi
r,s(t)|

)
(5)

that compares dynamic profiles (absolute values) of the signals [2], as follows.

1. Put S = {j1}, a set of already permuted subbands.
2. Find j2 = arg maxs/∈S {maxp,r d(p, j1, r, s)}.
3. Use the greedy algorithm to find πj2 (·) by maximizing d(·, j1, ·, j2). Namely,

define P = ∅ and R = ∅, and repeat
(a) (p, r) = argmaxp/∈P,r /∈R d(p, j1, r, j2)
(b) put πj2 (p) = r
(c) P = P ∪ {p}, R = R∪ {r}
until P � {1, . . . , M}

4. S = S ∪ {j2}, j1 = j2.
5. If S � {1, . . . , M}, go to 2.

3 Experiments

To demonstrate the performance of the proposed method, we test it on selected
data from the SiSEC 2010 campaign2. The data consists of two-microphone real-
world recordings of, respectively, two male and two female speakers played over
loudspeakers (signal combinations #1 and #2) placed in room #1 in position #1
shown in Fig. 2. Each source was recorded separately to obtain its microphone
responses, and the signals were summed to obtain the mixed signals; the original
sampling rate was 44.1kHz.
2 The task “Robust blind linear/non-linear separation of short two-sources-

two-microphones recordings” in the “Audio source separation” category; see
http://sisec.wiki.irisa.fr/tiki-index.php

http://sisec.wiki.irisa.fr/tiki-index.php
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Fig. 2. The position of microphones and loudspeakers in the experiment

For evaluation of the separation, we use the standard Signal-to-Interference
Ratio (SIR), as defined in [13]. The evaluation is computed using the full length
of recordings, which is about 2 seconds, but only the first second of the data was
used for computations of separating filters.

We compare the original T-ABCD from [9] working in fullband with the pro-
posed subband T-ABCD decomposing signals into 2, 4, 8, and 16 subbands, that
is, with M = 1, . . . , 4. The fullband T-ABCD is applied with L = 20, while in
subbands L = 10 is taken. The other parameters of T-ABCD are the same both
in fullband and subband; namely, the weighting parameter is α = 1, and the
BGSEP algorithm from [11] is used for finding ICs of X.

Fig. 3 shows the results of experiments done with signals resampled to the
sampling rates fs =8, 16, 32, and 44.1 kHz, respectively. The performance of
the fullband T-ABCD decreases with the growing fs. This is due to the fact
that the effective length of separating filters decreases as L is fixed to 20. A
comparable length of filters is applied in the 2-subbands method, where L = 10 in
each subband. The performance of the 2-subbands method is either comparable
(fs = 8 and 32 kHz) to the fullband method or even better (fs = 16 and 44.1
kHz) and does not decrease until fs ≤ 16. This points to the fact that the
fullband method suffers from increased bandwidth of signals when fs grows.

As can be seen from Fig. 3, the performance of the subband method does not
automatically increase with the number of subbands. This is mainly caused by
the permutation problem, which becomes more difficult with the growing number
of subbands. The results indicate that the optimal bandwidth of subbands is
between 2-5 kHz. Namely, (1) the 4-subbands method performs best at fs = 16
and 32 kHz, (2) the 8-subbands method provides the best results when fs = 32
and 44.1 kHz, and (3) the 16-subbands method seems to be effective if fs = 44.1
kHz. On the other hand, the decomposition of signals into 16 subbands seems
to be inadequate when fs = 8 or 16 kHz, as the 16-subbands method yields
unstable performance here.

3.1 Computational Aspects

The methods were running on a PC with quad-core i7 2.66 GHz processor in
MatlabTM with Parallel Computing ToolboxTM . There were four running work-
ers, i.e. one for each core of the processor, which means that up to four T-ABCDs
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Fig. 3. SIR improvement achieved by the separation. Each value is an average over
both separated sources and estimated microphone responses.

may run simultaneously in subbands. The average computational burden sum-
marizes Table 1 in the form A/B, where A and B denote the time needed for
separation without and with the aid of parallel computations, respectively. The
parallelization was realized through the parallel for-cycle (parfor).

The values in Table 1 prove the advantage of the subband method consisting
in lower computational complexity. Although the parallelization by means of the
Parallel Computing ToolboxTM is not that effective, it points to the potential
improvement in terms of speed. For example, the 4-subband method should
be almost four-times faster when running in parallel, since about 80% of the
computational burden is caused by T-ABCD, while the permutation correction
takes about 3% and the rest is due to the filtering operations.

Table 1. Average time needed per separation without and with parallel computations

computational time [s]
8kHz 16kHz 32kHz 44.1kHz

fullband 0.42/ - 0.90/ - 2.03/ - 2.84/ -
2-subband 0.25/0.17 0.46/0.31 0.90/0.69 1.35/0.97
4-subband 0.30/0.19 0.56/0.33 1.06/0.65 1.51/0.97
8-subband 0.40/0.25 0.66/0.42 1.26/0.83 1.83/1.13
16-subband 0.56/0.35 0.87/0.55 1.50/0.99 2.20/1.39

4 Conclusion

The proposed subband T-ABCD was shown to be an improved variant of T-
ABCD in terms of speed and separation performance, especially, when working
with signals sampled at sampling rates higher than 16 kHz. The method is able
to separate one second of data in a lower time, which points to its applicability
in a batch-online processing. The optimum number of subbands depends on the
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sampling frequency, which was shown to correspond to the bandwidth of about
2-5kHz per subband. Experiments not shown here due to lack of space show that
the subband T-ABCD might be combined with other filter banks (e.g. [3]) as
well, but the analysis filters must be adjusted to avoid the aliasing in maximally
decimated signals.
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